Selected Publications

Plant-climate Interactions

We investigate how changes in climate affect crop quality from a sensory, consumer, and health beneficial standpoint. Toward this end, we use 2-dimensional gas and liquid chromatography with mass spectrometry and new data analysis software we developed to obtain the total product profile of all detectable, volatile, plant metabolites and compounds in the foods we eat and drink.

  1. Plant-Climate Interaction Effects: Changes in the Relative Distribution and Concentration of the Volatile Tea Leaf Metabolome in 2014–2016, N. Kfoury, E.R. Scott, C. M. Orians, S. Ahmed, S. B. Cash, T. Griffin, C. Matyas, J. R. Stepp, W. Han, D. Xue, C. Long, and A. Robbat Jr., Frontiers in Plant Science, 2019, 10, article 1518, 1-10
  2. Environmental Factors Variably Impact Tea Secondary Metabolites in the Context of Climate Change, S. Ahmed, T.S. Griffin, D. Kraner, M.K. Schaffner, D. Sharma, M. Hazel, A.R. Leitch, C.M. Orians, W. Han, J.R. Stepp, A. Robbat, C. Matyas, C. Long, D. Xue, R.F. Houser, S.B. Cash, Frontiers in Plant Science, August 2019, 10, Article 939, Environmental Effects on Tea Quality
  3. 2014–2016 seasonal rainfall effects on metals in tea (Camelia sinensis(L.) Kuntze), H. Huang, N. Kfoury, C.M Orians, T. Griffin, S. Ahmed, S.B Cash, J.R. Stepp, D. Xue, C. Long, A. Robbat Jr., Chemosphere, 2019, 219, 796-803
  4. Interactive effects of drought severity and simulated herbivory on tea (Camellia sinensis) volatile and non-volatile metabolites, E. R. Scott, X. Lib, N. Kfoury, J. Morimoto, W.-Y. Han, S. Ahmed, S. B. Cash, T. S. Griffin, J. R. Stepp, A. Robbat Jr., C. M. Orians, Environmental and Experimental Botany, 2019, 157, 283–292
  5. Chapter 1: Global Climate Change, Ecological Stress, and Tea Production, S. Ahmed, T. Griffin, S. B. Cash, W. Han, C. Matyas, C. Long, C. M. Orians, J. R. Stepp, A. Robbat, D. Xuein Stress Physiology of Tea in the face of Climate Change, Springer nature Pte Ltd. 2018
  6. Striking Changes in Tea Metabolites Due to Elevational Effects, N. Kfoury, J. Morimoto, A. Kern, E. Scott, C. Orians, S. Ahmed, T. Griffin, S. Cash, J. Stepp, D. Xue, C. Long, and A. Robbat Jr., Food Chemistry, 2018, 264, 334 -341
  7. Direct Contact Sorptive Extraction: A Robust Method for Sampling Plant Volatiles in the Field, N. Kfoury, E. Scott, C. Orians, and A. Robbat, Jr., J. of Agric. Food Chem., 2017, 65, 8501−8509
  8. Association between Empirically Estimated Monsoon Dynamics and Other Weather Factors and Historical Tea Yields in China: Results from a Yield Response Model R. Boehm, S. Cash, B. Anderson, S. Ahmed, T.S. Griffin, A. Robbat Jr., J. R. Stepp, W. Han, M. Hazel and C.M. Orians, Climate, 2016,4, 20
  9. Effects of Extreme Climate Events on Tea (Camellia sinensis) Functional Quality Validate Indigenous Farmer Knowledge and Sensory Preferences in Tropical China, S. Ahmed, J.R. Stepp, C. Orians, T. Griffin, C. Matyas, A. Robbat, S. Cash, D. Xue, C. Long, U. Unachukwu, S. Buckley, D. Small, E. Kennelly, PlosOne, Volume 9, Issue 10, page 1-13, October 2014
  10. Effects of Water Availability and Pest Pressures on Tea (Camellia sinensis) Growth and Functional Quality, S. Ahmed, C.M. Orians, T.S. Griffin, S. Buckley, U. Unachukwu, A.E. Stratton, J.R. Stepp, A. Robbat Jr., S. Cash, and E.J. Kennelly, AoB Plants 1-9, September 24, 2014

 

Microbial Interactions

We also use the same problem-solving approach to understand how microbes interact with one another and how these interactions affect plant chemistry and food.

  1. Rapid Phenotypic and Metabolomic Domestication of Wild Penicillium Molds on Cheese, I. Bodinaku, J. Shaffer, A. B. Connors, J. L. Steenwyk, M. N. Biango-Daniels, E. K. Kastman, A. Rokas, A. Robbat, B. E. Wolfe, e. mBio, 2019, 10 (5) 1-16
  2. Indigo- and indirubin-producing strains of Proteus and 1 Psychrobacter are associated with purple rind defect in a surface-ripened cheese, N. Kamelamela, M. Zalesne, J. Morimoto, A. Robbat, and B. E. Wolfe, Food Microbiology, 2018, 76, 543-552

 

Untargeted/Targeted Metabolomics

  1. Untargeted/Targeted 2D Gas Chromatography/Mass Spectrometry Detection of the Total Volatile Tea Metabolome, J. Morimoto, M. C. Rosso, N. Kfoury, C. Bicchi, C. Cordero and A. Robbat, Jr. 1, Molecules, 2019, 24, 3757, 1-14
  2. Differentiation of key biomarkers in tea infusions using a target/nontarget gas chromatography/mass spectrometry workflow, N. Kfoury, E. Baydakov, Y. Gankin, A. Robbat Jr., Food Research International, 2018, 113, 414-423
  3. Optimizing Targeted/Untargeted Metabolomics by Automating Gas Chromatography/Mass Spectrometry (GC-GC/MS and GC/MS) Workflows, A. Robbat Jr., N. Kfoury, E. Baydakov, Y. Gankin, J. Chrom A., 2017, 1505, 96-105
  4. Metabolite Profiling of Camellia sinensis by Automated Sequential Multidimensional Gas Chromatography/Mass Spectrometry Reveals Strong Monsoon Effects on Tea Constituents, A. Kowalsick, N. Kfoury, A. Robbat Jr, S. Ahmed, C. Orians, T. Griffin, S. B. Cash, J. R. Stepp, J. Chrom A 1370, 230-239, 2014
  5. Using Automated Sequential Two-Dimensional Gas Chromatography/Mass Spectrometry to Produce a Library of Essential Oil Compounds and Track their Presence in Gin Based on Spectral Deconvolution Software,  A. Robbat Jr., A. Kowalsick, Flavor, Fragrance, and Odor Analysis, Second Edition, editor Ray Marsili, Chapter 8, CRC Press, Boca Raton, FL, December 2011
  6. Tracking Juniper Berry Content in Oils and Distillates by Spectral Deconvolution of Gas Chromatography/Mass Spectrometry Data, A. Robbat Jr., A. Kowalsick, J. Howell, Journal of Chromatography A, 1218, 5531– 5541, 2011

 

GC/MS, LC/MS Data Analysis Software

We continue to develop new data analysis software capable of automating the library-building process and to provide comprehensive analysis of all detectable compounds by GC-GC/MS, GCxGC/MS, and GC/MS. Spectral deconvolution in conjunction with mass spectral subtraction algorithms provide the means to accomplish this task. Work is in progress to develop data analysis software for samples analyzed by 1D/2D LC/MS.

  1. Differentiation of key biomarkers in tea infusions using a target/nontarget gas chromatography/mass spectrometry workflow,  N. Kfoury, E. Baydakov, Y. Gankin, A. Robbat Jr., Food Research International, 2018, 113, 414-423
  2. Optimizing targeted/untargeted metabolomics by automating gas chromatography/mass spectrometry (GC–GC/MS and GC/MS) workflows, Robbat, A., N. Kfoury, E. Baydakov, Y. Gankin, Journal of Chromatography, 2017, 1505, 96-105.
  3. A New Spectral Deconvolution – Selected Ion Monitoring Method for the Analysis of Alkylated Polycyclic Aromatic Hydrocarbons in Complex Mixtures, A. Robbat Jr. and N.M. Wilton, Talanta 125, 114–124, 2014
  4. A More Accurate Analysis of Alkylated PAH and PASH and its Implications in Environmental Forensics, P.M. Antle, C.D. Zeigler, N.M. Wilton and A. Robbat, Jr., Intern. J. Environ. Anal. Chem., 94 (4), 332-347, 2014
  5. New Spectral Deconvolution Algorithms for the Analysis of Polycyclic Aromatic Hydrocarbons and Sulfur Heterocycles by Comprehensive Two-Dimensional Gas Chromatography-Quadrupole Mass Spectrometery, P.M. Antle, C.D. Zeigler, Y. Gankin, and A. Robbat, Jr., Analytical Chemistry, 85, 10369-10376, 2013
  6. Mass Spectra and Retention Indexes for Polycyclic Aromatic Sulfur Heterocycles and Some Alkylated Analogs, C. Zeigler, M. Schantz, S. Wise and A. Robbat, Jr., Polycyclic Aromatic Compounds 32(2), 154-176, 2012
  7. Comprehensive Profiling of Coal Tar and Crude Oil to Obtain Mass Spectra and Retention Indices for Alkylated PAH Shows Why Current Methods Err, C. Zeigler and A. Robbat, Jr., Environ. Sci. Technol., 46 (7), 3935-3942, 2012

 

Hazardous Waste Site Investigation and Remediation

  1. Remediation of Heavy Hydrocarbon Impacted Soil Using Biopolymer and Polystyrene Foam Beads, N. Wilton, B. Lyon-Marion, R. Kamath, K. McVey, K. Pennell, and A. Robbat Jr., J. of Hazardous Materials, 2018, 349, 153-159
  2. Errors in alkylated polycyclic aromatic hydrocarbon and sulfur heterocycle concentrations caused by currently employed standardized methods, N. M. Wilton, S. A. Wise , A. Robbat Jr., Analytica Chimica Acta, 977, 20-27, 2017
  3. A Biosurfactant/Polystyrene Polymer Partition System for Remediating Coal Tar-Contaminated Sediment, N.M. Wilton, C.D. Zeigler, R. Leardi, and A. Robbat, Jr., Soil And Sediment Contamination, 2016, VOL. 25, NO. 6, 683-689
  4. Two-dimensional gas chromatography/mass spectrometry, physical property modeling and automated production of component maps to assess the weathering of pollutants, P.M. Antle, C.D. Zeigler,D.G. Livitz, A. Robbat, Jr. J Chrom A 1364, 223–233, 2014
  5. Retention Behavior of Alkylated Polycyclic Aromatic Sulfur Heterocycles on Immobilized Ionic Liquid Stationary Phases, P. M. Antle, C.D. Zeigler, and A. Robbat, Jr., J Chrom A 1361, 255-264, 2014
  6. Estimating the Amount of Coal Tar Weathering in Sediments by 2-dimensional GC-GC/MS and GCxGC/MS Techniques – Phase III, A. Robbat, P. Antle, C. Zeigler, Electric Power Research Institute, Palo Alto, CA: 1022148, Technical Update March 2012
  7. Toward the Accurate Analysis of C1 to C4 Polycyclic Aromatic Sulfur Heterocycles, C. Zeigler, N. Wilton, A. Robbat, Jr., Analytical Chemistry, 84 (5), 2245-2252, 2012
  8. Subsurface Detection of Fossil Fuel Pollutants by Photoionization and Gas Chromatography/Mass Spectrometry, A. Robbat Jr., T. Considine, P. M. Antle, Journal of Chromatography A,  80 1370–1376, 2010
  9. Sediment Quality of Lakes, Rivers, and Estuaries in the Mystic River Basin, Eastern Massachusetts, 2001-2003, R.F. Breault, J. L. Durant, and A. Robbat, Jr. Scientific Investigations Report, U.S. Department of the Interior, U.S. Geological Survey, Report 2005-5191