Faculty

Faculty

Core Faculty

faculty photo

Danilo Marchesini

Astronomy; galaxy formation and evolution; extra-galactic surveys; active galactic nuclei; near-infrared astronomy Understanding how galaxies form and evolve means understanding how the tiny differences in the distribution of matter inferred from the cosmic microwave background radiation grew and evolved into the galaxies we see today. The working hypothesis is that galaxies form under the influence of gravity, and galaxy formation can be seen as a two-step process. First, the gravity of dark matter causes the tiny seeds in the matter distribution to grow bigger with time. As they grow more massive, the gravitational attraction becomes stronger, making it easier for these structures to attract additional matter. As the dark matter structures grow, they pull in also the gas, made of hydrogen and helium, which is the primary ingredient for the formation of stars, and hence for the formation of the stellar content of galaxies. The formation of the stellar content inside these dark matter structures involves many physical processes that are much more complicated and quite poorly understood from a theoretical perspective. These physical processes include, for example, how gas cools and collapses to form stars, the process of star formation itself, merging of galaxies, feedback from star formation and from active super-massive black holes. My research activity in the past decade has focused on understanding how galaxies formed after the Big Bang, and how their properties (e.g., the stellar mass, the level of star formation activity, the morphology and structural parameters, the level of activity of the hosted super-massive black hole, etc.) have changed as a function of cosmic time. Since we cannot follow the same galaxy evolving in time, we need to connect the galaxies we observe at a certain redshift (i.e. a certain snapshot in time) to those we observe at a smaller redshift (i.e., at a later time in cosmic history) in order to infer how the properties of galaxies have actually changed and what physical mechanisms are responsible for these changes. The better we understand the galaxy properties at a certain time and the more finely in time we can probe the cosmic history, the easier it becomes to connect galaxies' populations seen at different snapshots in time, linking progenitors and descendants across cosmic time. Ultimately, my research aims at understanding what galaxy population seen at one epoch will evolve into at a later epoch, and what physical processes are responsible for the inferred changes in the galaxies' properties. In order to do this, I have adopted two different but complementary approaches. The first approach consists of statistical studies of the galaxy populations at different cosmic times; the second approach consists of detailed studies of individual galaxies to robustly derive their properties.
faculty photo

Pierre-Hugues Beauchemin

Experimental High Energy Physics My research focuses on the discovery of new fundamental particles of nature, as well as on the understanding of the behavior of the known particles. To do this, I participate in the ATLAS experiment, one of the two general-purpose detectors at the Large Hadron Collider at CERN. My work currently consists in analyzing data in order to: Perform precision measurements leading to a better understanding of the strong interaction within the QCD theoretical framework; Search for new physics in events involving large amount of missing energy, typical signature of new particles that interact very weakly with normal matter such as dark matter candidate; Develop and estimate the performance of the ATLAS trigger system. This last aspect of my work also involves software development and a participation in the detector operation. I'm focusing my efforts on the Missing Energy trigger. The Standard Model of particle physics, despite being very successful, cannot be the end of the story. It contains a certain number of theoretical dissatisfactions. Of all the possibilities, I believe that dark matter is one of our best guess. Its existence is based on experimental facts, and the mass scale of dark matter particles, in the case where it is the right explanation, should be accessible at the LHC. Its existence would be inferred by the observation of missing energy in subset of all collected events. Looking for excesses of events involving large amount of missing energy over expectations is a promising way to look for dark matter at the LHC. My approach is to carry such search by performing precision measurements of Standard Model quantities, to optimize the sensitivity of the analysis to such new particles. Predictions using quantum chromodynamics (QCD) implies many approximations, assumptions or simplifications at various levels. These could lead to large systematic uncertainties on various Standard Model predictions, possibly leading to significant limits in our sensitivity to new phenomena. My research try to determine which of the simplifications and approximations are acceptable at the level of precision needed for a new physics discovery. To this end, I investigate events that contain a vector boson and jets, as they are sensitive to such physics and yet provide a clean enough environment to allow for high precision measurements. These are also the most important background to a wide range of new physics signature. As a side, I am also interested in the philosophy of physics, focusing on epistemological aspects of experiments and simulations as used in High Energy Physics.
faculty photo

Mark Hertzberg

Theoretical Physics: Cosmology, Particle Physics, Astrophysics. My primary research is in physics at the interface between theoretical cosmology and particle physics, including astrophysics and aspects of quantum field theory. By studying the extreme conditions of the very early universe, as well as the properties of the late universe's dark constituents, and analyzing the results of various ground based experiments, we can gain insights into the fundamental laws of nature. This acts as the driving force behind much of my research, although I sometimes investigate other interesting subjects. A central focus has been on trying to understand the nature of dark matter, which forms the majority of matter in the universe. There are various interesting candidates for the dark matter, including so-called axions, which may organize into new interesting types of structures. Furthermore, I have worked on the understanding the large scale structure of the universe, which gives insights into the initial conditions of the early universe. Another focus has been on understanding cosmological inflation, which is the leading idea for the earliest moments of our universe, involving an early phase of rapid expansion. I have worked on connecting inflation to the matter anti-matter asymmetry of the universe and worked on the post-inflationary era where the universe needs to transition to a hot soup of particles. A recent interest is in pursuing a fundamental understanding of gravitation. I am interested in understanding the full set of theoretical and observational constraints that determine the structure of gravitation, including constraints from quantum mechanics. Furthermore, I sometimes investigate interesting quantum phenomena, including entanglement entropy and the Casimir effect.
faculty photo

Krzysztof Sliwa

Physics of elementary particles The Standard Model, gauge theories; also topology, differential geometry and other branches of modern mathematics to better understand quantum gauge theories, the origin of mass and the structure of space-time, matter and all interactions, including gravity. I am a member of the ATLAS collaboration at the LHC. Studies of Higgs boson and top quarks. The main objective is to find out whether the new particle discovered in 2012 is a minimal Standard Model Higgs, or some other kind. Studies of top quarks are very interesting on their own. Because of very large mass of the top quark, its lifetime is very short, ~ 5x10^{-25} seconds, much shorter that the characteristic time of the strong interactions. As a consequence, top quark decays before any strong interaction effects may take place. This allows a direct access to the information about the quark spin, which is very difficult, if not impossible, for any other quark. Studies of top quarks are very important for other searches, as top quarks will constitute the most important background for almost any final states due to "new physics" and have to be understood very well. We are using very advanced multidimensional analysis techniques, developed by our group (Ben Whitehouse and I). Topology and geometry of the Universe In the Standard Cosmological Model (SCM), the starting point is an interpretation of the observed redshift of spectral lines from distant galaxies as a Doppler shift in the frequency of light waves as they travel through an expanding Universe. Acceptance of this hypothesis led to the ideas of the Big Bang and the LambdaCDM, the Standard Model of cosmology. Remarkably, there exist another explanation of the cosmological redshift. As shown by Irving Ezra Segal, a mathematician and a mathematical physicist, the same axioms of global isotropy and homogeneity of space and time, and its causality properties, are satisfied not only by the Minkowski spacetime R x R^3, but also by a Universe whose geometry is R X S^3. In Segal's model, the geometry of the spatial part of the Universe is that of a three-dimensional hypersurface of a four-dimensional sphere. Locally, it is indistinguishable from the flat Minkowski spacetime. It is the geometry of the Einstein static Universe, which he abandoned when the interpretation of the increase of redshift with distance was universally accepted as evidence for expanding Universe. If the universe is R1 x S3 but observations are made in flat Minkowski frame, then such an observer measures the "projections" from R1 x S3 into flat R1 x R3. The redshift in Segal's model arises in a geometric way analogously to distortions which appear when making maps using stereographic projection from S^2, a two-dimensional curved surface of a sphere in three dimensions, onto a flat surface of a map, R^2. Segal's theory makes a verifiable prediction for the redshift as a function of distance. The comparison, although in principle very simple, is non-trivial. For more distant objects, one can only estimate the distance using various proxies, for example the magnitude, if one assumes that the chosen sources have the same absolute luminosity. Surprisingly, Segal's model cannot be falsified with the currently available data. The magnitude-redshift data for supernovae agree very well with SCM, but it also agrees with Segal's model. There exist another independent observable, the number of observed galaxies as a function of redshift z, N(< z). Assuming that galaxies are uniformly distributed in the Universe, their number is proportional to the volume enclosed in a given fixed angular field of view, and the dependence of this volume on the manifold distance is sensitive to the geometry of the Universe. Two Tufts undergraduate students, Maxwell Kaye and Nathan Burwig, joined me in this analysis. We examined the data from several Hubble Deep Fields, and found that the number of observed galaxies as a function of redshift is also in very good agreement with Segal's model. We are continuing with a study of these fundamental questions about the topology and geometry of our Universe. Interestingly, I have also shown recently that one can explain the observed value of the CMB temperature, following Segal's original idea that the CMB appears unavoidably as a result of light traveling many times around a closed spatial part of the R X S^3 Universe. Magnetic monopoles I am also a member of MoEDAL, a small collaboration looking for magnetic monopoles at the LHC.
faculty photo

Cristian Staii

Biological Physics, Condensed Matter Physics, Quantum Mechanics My research interests cover a broad array of topics in biological physics, condensed matter physics and quantum mechanics. In biological physics our group is performing both experimental and theoretical work to uncover fundamental physical principles that underlie the formation of functional neuronal networks among neurons in the brain. One of the primary challenges in science today is to figure out how as many as 100 billion neurons are produced, grow, and organize themselves into the truly wonderful information-processing machine which is the brain. We combine high-resolution imaging techniques such as atomic force, traction force and fluorescence microscopy to measure mechanical properties of neurons and to correlate these properties with internal components of the cell. Our group is also using mathematical modeling based on stochastic differential equations and the theory of dynamical systems to predict axonal growth and the formation of neuronal networks. The aim of this work is twofold. On the one hand we are using tools and concepts from experimental and theoretical physics to understand biological processes. On the other hand, active biological processes in neuronal cells exhibit a wealth of fascinating phenomena such as feedback control, pattern formation, collective behavior, and non equilibrium dynamics, and thus the insights learned from studying these biological systems broaden the intellectual range of physics. I am also interested in the foundations of quantum mechanics, particularly in decoherence phenomena and in applying the theory of stochastic processes to open quantum systems. My interests in condensed matter physics include quantum transport in nanoscale systems (carbon nanotubes, graphene, polymer composites, hybrid nanostructures), as well as scanning probe microscopy investigations of novel biomaterials.

Affiliate Faculty

Part-time Faculty

Emeriti Faculty